Annotated Bibliography on the Ecology and Management of Invasive Species:

Oxeye daisy (*Leucanthemum vulgare* Lam.)
(synonym *Chrysanthemum leucanthemum* L.)

prepared by
Juliet Craig, Silverwing Ecological Consulting, Nelson, BC
and
Marian McCoy, Vancouver, BC
for the Garry Oak Ecosystems Recovery Team
and the Nature Conservancy of Canada

May 2005

Funds for this project were provided in part by the Parks Canada Species at Risk Recovery Action and Education Fund, a program supported by the National Strategy for the Protection of Species at Risk
Annotated Bibliography on the Ecology and Management of Invasive Species:

Oxeye daisy (*Leucanthemum vulgare* Lam.)
(synonym *Chrysanthemum leucanthemum* L.)

Peer-reviewed Journal Articles

Authors’ abstract: Thirty-two weeds commonly found in the organic soils of southwestern Quebec were evaluated for host suitability to a local isolate of the northern root-knot nematode *Meloidogyne hapla* under greenhouse conditions. Galls were observed on the roots of 21 species. Sixteen of the 21 had a reproduction factor ($P_f/P_i = \text{final number of } M. \text{ hapla eggs and juveniles per initial number of } M. \text{ hapla juveniles per pot}$) higher than carrot ($P_f/P_i = 0.37$), the major host crop in this agricultural area. Tomato cv. Rutgers was also included as a susceptible host and had the highest P_f/P_i value of 13.7. *Bidens cernua*, *B. frondosa*, *B. vulgata*, *Erysimum cheiranthoides*, *Eupatorium maculatum*, *Matricaria matricarioides*, *Polygonum scabrum*, *Thalictrum pubescens*, *Veronica agrestis*, and *Sium suave* are new host records for *M. hapla*. *Bidens cernua*, *B. frondosa*, *B. vulgata*, *D. carota*, *M. matricarioides*, *Pastinaca sativa*, *P. scabrum*, *S. suave*, and *Thlaspi arvense* sustained moderate to high galling by *M. hapla* and supported high *M. hapla* production ($12.4 \leq P_f/P_i \leq 2.9$). *Capsella bursa-pastoris*, *Chrysanthemum leucanthemum*, *Gnaphalium uliginosum*, *Stellaria media*, and *Veronica agrestis* sustained moderate galling and supported moderate *M. hapla* reproduction ($2.8 \leq P_f/P_i \leq 0.5$). *Chenopodium album*, *C. glaucum*, *E. cheiranthoides*, *P. convolvulus*, *Portulaca oleracea*, and *Rorippa islandica* supported low reproduction ($0.25 \leq P_f/P_i \leq 0.02$) and sustained low galling.

Galling was observed on *Senecio vulgaris* but no eggs or juveniles; thus, *S. vulgaris* may be useful as a trap plant. *Eupatorium maculatum* and *T. pubescens* harbored no distinct galling but supported low to moderate *M. hapla* reproduction, respectively. *Amaranthus retroflexus*, *Ambrosia artemisiifolia*, *Echinochloa crusgalli*, *Erigeron canadensis*, *Oenothera parviflora*, *Panicum capillare*, *Setaria glauca*, *S. viridis*, and *Solidago canadensis* were nonhosts. Our results demonstrate the importance of adequate weed control in an integrated program for the management of *M. hapla* in organic soil.

Authors’ abstract: *Leucanthemum vulgare* Lam. (Asteraceae), known as ox-eye daisy, is a familiar perennial herb with white ray florets and yellow disc florets. It commonly inhabits roadside verges, pastures and old fields from Newfoundland to British Columbia, and also as far north as the Yukon Territory. Introduced from Europe, *L. vulgare* was well established in North America by 1800. The Canadian distribution of *L. vulgare* has expanded in many areas recently, particularly in western Canada. It can form dense populations that may
reduce diversity of natural vegetation or pasture quality, and also serves as a host and reservoir for several species of polyphagous gall-forming Meloidogyne nematodes that feed on crops. It is considered a noxious weed under provincial legislation in Quebec, Manitoba, Alberta and British Columbia, as well as under the Canada Seeds Act. Control efforts are sometimes complicated by difficulties in distinguishing ox-eye daisy from some forms of the commercially available Shasta daisy (L. X superbum).

Authors’ abstract: 1. Diversification of species-poor grassland often requires the introduction of desirable species by sowing seed. Little is known about the factors controlling the spread of introduced species, or how these interact with management. We determined whether management affected spread rates of two grassland species by modifying seed dispersal or seedling establishment.

2. An experiment was set up in 1995 on a species-poor grassland. It comprised five blocks, each with four treatments: (1) autumn grazed only; (2) cut July; (3) cut July and September; (4) cut July and aftermath grazed. Twenty-two plant species were separately slot-seeded into each treatment plot, providing discrete linear colonization foci.

3. The mechanisms controlling spread were studied in two species: Rhinanthus minor, an annual with large seeds adapted for wind dispersal; and Leucanthemum vulgare, a perennial with small seeds with no obvious dispersal adaptations.

4. Perpendicular spread of each species by 1998 was described well by a simple inverse power model. Rhinanthus had spread further in the hay-cut treatments (2-4) than in the grazed treatment (1). Leucanthemum spread poorly in all plots, with no treatment effects.

5. Seed dispersal from source slots was also described well by the inverse power model. Dispersal curves for Rhinanthus were much longer in the hay-cut treatment (3) than in the grazed treatment (1), because more seed dispersed during hay cutting than before, and cutting dispersed seed longer distances. There was no dispersal by grazing animals. Dispersal showed directional effects: seeds travelled farther in the prevailing wind direction before the hay-cut and in the grazed treatment; dispersal by hay cutting was farther in the cut direction than in the opposite direction.

6. Leucanthemum showed poor dispersal, with no treatment effects, except that more seeds were dispersed in the grazed (1) than the hay-cut (3) treatment.

7. The establishment and survival of sown seeds showed no treatment effects for either species.

8. Management effects on the spread of Rhinanthus reflected effects on dispersal, rather than establishment. Leucanthemum showed poor dispersal but good establishment in all treatments, suggesting its spread may also have been dispersal-limited. Rhinanthus was positively affected by hay cutting because it set seed at the time of cutting, whereas Leucanthemum set seed later and cutting reduced its seed production.

9. The results indicate that management of grassland to enhance the colonization of sown species might be best targeted at enhancing seed-dispersal distances. Hay cutting can do this, but must coincide with seed set.

Author’s abstract: The tolerance of transplanted lanceleaf coreopsis (*Coreopsis lanceolata* L.), ox-eye daisy (*Chrysanthemum leucantheum* L.), purple coneflower (*Echinacea purpurea* L. Moench.), and blanket flower (*Gaillardia aristata* Pursh) to metolachlor was determined in field trials. Metolachlor at 4.5 kg.ha⁻¹ (maximum use rate) and 9.0 kg.ha⁻¹ (twice the maximum use rate) did not reduce stand or flowering of any wildflower species after one or two applications, although plants developed transient visible injury. Combining metolachlor with the broadleaf herbicides simazine or isoxaben resulted in unacceptable injury and stand reduction, especially in ox-eye daisy. Metolachlor plus oxadiazon was less injurious to the wildflowers than metolachlor plus either simazine or isoxaben. Treatments containing metolachlor controlled yellow nutsedge (*Cyperus esculentus* L.) by at least 89% in both experiments. Treatments containing isoxaben controlled eclipta (*Eclipta alba* L.) 100% in both studies.

Authors’ abstract: Two phototoxic plants of the Asteraceae family were studied in relation to species of phytophagous insects for which they are hosts: *Argyrotaenia velutinana* Wlk. feeding on *Chrysanthemum leucantheum* L. and *Chlorochlamys chloroleucaria* (Guenee) colonizing *Rudbeckia hirta* L. The toxicity of these two plants is related to the presence of acetylenes and thiophenes that induce a light-mediated production of deleterious singlet oxygen and other free radicals (phototoxicity). Results showed that females of *A. velutinana* laid their eggs preferentially in the shade and the larvae adopted hiding behaviors, such as bending of ligulate corollas and silk spinning to build opaque shelters. By avoiding direct exposure to the sun, both behaviors may reduce phototoxicity associated with ingested plant materials. Furthermore, larvae of *C. chloroleucaria* demonstrated a preference in the field for pollen, which constitutes a nonphototoxic tissue of their host plant. Experimental alterations of these specific behaviors induced important biological consequences for larvae of both insects such as mortality or reduction of larval growth rate. These results reinforce the idea that behavior may constitute an efficient adaptation to avoid phototoxicity.

Authors’ abstract: Five methods for increasing the botanical diversity of permanent grassland, either by sowing site-specific species-rich grass/forb seed mixtures (strip-seeding; or overseeding after sward disturbance by light harrowing, partial rotary cultivation or turf removal), or by introducing transplanted plug plants, were compared with a control treatment in replicated field experiments on six farm sites in Environmentally Sensitive Areas (ESAs) in England and Wales. Effects on herbage production under hay cutting in July and on botanical composition were recorded in the two subsequent years. Turf removal before sowing was the only treatment that significantly reduced herbage production; this treatment also had the greatest effect on increasing botanical diversity (to a mean of twenty-eight plant species per site compared with fifteen species for the control two years after sowing).

The least successful establishment of sown species resulted from light harrowing before sowing; the rotary-cultivated and strip-seeded treatments increased species diversity, although by less than turf removal. Successful establishment of introduced species was greatest on sites having a low soil nutrient status. Species that established successfully from seed on most
sites and treatments included the grasses *Alopecurus pratensis*, *Cynosurus cristatus*, *Festuca rubra* and *Phleum pratense*, and the forbs *Achillea millefolium*, *Leucanthemum vulgare*, *Plantago lanceolata* and *Prunella vulgaris*; in addition, *Centaurea nigra*, *Hypochoeris radicata* and *Lotus corniculatus* were also established by one or more methods on most sites, *Lychnis flos-cuculi* established successfully on mesotrophic sites, and *Medicago lupulina* on calcareous sites. Several species failed to establish at all or most sites where they were sown, e.g. *Helianthemum nummularium*, *Pimpinella saxifraga* and *Rhinanthus minor*. Most transplanted plug-plant species established successfully in the short term, but many failed to persist or their frequency in the sward remained low; exceptions included *A. millefolium* and *P. lanceolata*. The results are discussed in relation to the requirements for management to further the objectives of ESAs and agri-environmental schemes.

This article provides a comprehensive botanical description of *Leucanthemum vulgare*.

Authors’ abstract: The assessment of VA-mycorrhizal infection in the vegetation of a fallow agricultural soil in Germany was investigated. The habitat is characterized by sufficient nutrient content, low pH as well as soil moisture. From 43 examined species of flowering plants 40 were heavily infected by VA-mycorrhizal fungi. They belong to the Apiaceae, Fabaceae, Ranunculaceae, and Asteraceae, whereas the other three species, *Calluna vulgaris*, *Cardamine pratense* and *Anthoxanthum odoratum*, showed no VA-mycorrhizal structures within their roots. Some plants which very seldom occur, such as *Tragopogon pratensis*, *Agrimonia eupatoria*, *Chrysanthemum leucanthemum*, *Heracleum spondylium* and *Lathyrus pratensis*, are very heavily infected by VAM. The extension of typical mycorrhizal structures as well as the important role of unstained mycorrhizal root segments for the isolation of efficient VAM-fungi is pointed out.

Authors’ abstract: Many upland pastures and forest meadows in the western United States contain significant infestations of yellow hawkweed and oxeye daisy. Documentation of infestations is necessary in order to plan and assess control tactics. Previous work with an airborne charge coupled device (CCD) with spectral filters indicated that flowering yellow hawkweed with at least 30% cover was detectable at 1 m resolution. A single image of a large area may not capture all plants in the flowering phase and multiple images are costly. The objective of this paper was to assess the accuracy of images recorded at different phenological stages. We compared three methods of classification: unsupervised classification of a three principal component analysis image, supervised classification of a three principal component analysis image, and supervised classification of a composited image consisting of four bands and normalized difference near infrared (NIR)/red band. Regardless of the classification method, images of yellow hawkweed and oxeye daisy in full bloom had lower classification error than at early bloom or post bloom. The percent error for yellow hawkweed classification was about twice as high at post bloom as at full bloom, but varied slightly depending on the method of classification and cover class. The ability to detect discrete colonies of yellow hawkweed was not affected by phenological stage, but the
ability to measure the area of each cluster differed among stages. Less than one-third of the pixels classified as yellow hawkweed or oxeye daisy in the early bloom image remained in the same class in the full bloom image. About half the pixels in the full bloom image remained in the 90 to 100% cover class at the post bloom image. Seasonal growth of the grasses masked some yellow hawkweed and oxeye daisy plants, and accounted for differences in classification among phenological stages.

Abstract not available.

Authors’ abstract: The number of documented exotic plants in Yellowstone National Park has increased from 85 known in 1986 to over 185 today. Exotic plants are having a substantial impact on the park's natural and cultural resources and are a high management priority. We have adopted an integrated weed management approach with regard to exotic vegetation, emphasizing prevention, education, early detection and eradication, control and, to a lesser degree, monitoring. The program involves over 140 staff with program expenditures averaging approximately $190,000 annually. Prevention actions include: using only approved gravel on construction projects; banning hay in the backcountry; transport of only certified weed-seed-free hay through Yellowstone; requiring construction equipment to be pressure-cleaned prior to entering the park; and re-vegetation with native species after road, housing, and other construction projects have disturbed ground. Over 4500 acres, primarily along roadsides and in developed areas, are surveyed annually in early detection efforts with emphasis placed on eradicating small new infestations of highly invasive species, such as sulfur cinquefoil (Potentilla recta L.) and leafy spurge (Euphorbia esula L.). Control efforts focus on about 30 priority species, such as spotted knapweed (Centaurea maculosa Lam.), oxeye daisy (Chrysanthemum leucanthemum L.), and hoary cress (Cardaria draba [L.] Desv.) using chemical, mechanical, and cultural techniques. A total of 2027 acres were treated during 1998, whereas control efforts for 12 species occurred on 2596 acres during the previous 3-year period 1995-1997. Strong and expanding partnerships with other federal, state, and local agencies and private companies contribute to management efforts within the park. Future program goals emphasize increases in base funding to ensure continued weed management efforts as well as expanding survey, monitoring, and reclamation efforts. Ultimately, a more rigorous assessment of program effectiveness is desired.

Authors’ abstract: Oxeye daisy has invaded seeded pastures, roadsides, and mountain rangelands in western Montana. In 1990, we began a study to: (1) determine use of oxeye daisy and introduced perennial grasses by cattle; (2) determine effects of intensive cattle grazing on the number of oxeye daisy seeds in the soil; and (3) assess effects of intensive grazing on year-to-year changes in oxeye daisy and associated perennial grasses. Cattle grazed oxeye daisy but much of their impact was from trampling or removing stems. The number of oxeye daisy seeds in the soil seed bank was lower in 1992 than in 1990 in grazed areas, whereas the number was higher in ungrazed areas. Two years of intensive grazing
reduced densities of oxeye daisy seedlings and rosettes, but did not change densities of mature stems. Intensive grazing had minimal impact on the introduced grasses.

Author’s abstract: This paper explores the idea that predators may disrupt plant-pollinator relationships and consequently inhibit reproduction in flowering plants. Amidst growing evidence that predators influence plant-pollinator interactions, I suggest that such pollinator-mediated indirect effects may be a common feature of terrestrial communities, with implications for research into top-down effects and pollination ecology. Experimental evidence of such an effect from a riparian system in northern California is provided, where crab spiders decreased seed production in inflorescences of the invasive plant *Leucanthemum vulgare* by reducing the frequency and duration of floral visits by pollinating insects.

Authors’ abstract: During 1986 and 1987, a weed survey of 187 New Brunswick cereal fields was conducted. A total of 76 species were identified of which 40 were considered agronomically important. About 50% of the species were perennial. Hemp-nettle (*Galeopsis tetrahit*), quack grass (*Agropyron repens*), sheep sorrel (*Rumex acetosella*), ox-eye daisy (*Chrysanthemum leucanthemum*), corn spurry (*Spergula arvensis*), and chickweed (*Stellaria media*) had the highest relative abundance values. Quack grass and hemp-nettle had the highest densities at 8.0 and 7.1 plants m-2, respectively. The highest weed density (103 plants m-2) was found in oats (*Avena sativa*) grown after a forage crop. The lowest density (24 plants m-2) was found in wheat (*Triticum aestivum*) grown after potatoes (*Solanum tuberosum*). Most of the abundant species were tolerant to MCPA, the most commonly used herbicide. Farmers could make major improvements in cereal weed control by choosing a herbicide that would control species tolerant to MCPA or 2,4-D, and using pre-plant or post-harvest weed control to minimize the impact of perennial weeds.

Authors’ abstract: Several studies have presented experimental evidence that diversity reduces invasibility in grassland communities. The interpretation of these results has been disputed recently and it was proposed that sampling effects were responsible for the observed decrease of invasibility with diversity. The experiments performed to date were not designed to adequately separate sampling from diversity effects. Using the establishment of native plant species in experimental plant communities as a model of invasibility, we show that the number of invaders decreased with increasing diversity. When the presence of particular species is included, their effects are dominant. *Centaurea jacea* showed a strong effect at low diversity, whereas *Leucanthemum vulgare* showed a very strong negative impact at each diversity level. The negative effect of the latter might be related to root-feeding nematodes that showed far higher abundance in plots with *Leucanthemum*. However, diversity remained a significant factor in determining the number of invading species and the numbers of an abundant invader.

Authors’ abstract: Attempts to restore species-rich flood-plain meadows from abandoned arable fields in the valley of the river Meuse, northeast France, were studied. The study area was sown with a commercial seed mixture, composed of Phleum pratense, Festuca pratensis, Lolium perenne and Trifolium repens. The above-ground vegetation in the study area 1, 2 and 3 yr after restoration was compared to (1) the vegetation present during the previous 5-yr fallow stage and (2) target flood-plain meadows. Before restoration, the above-ground fallow vegetation was dominated by ruderal and annual species, while only very few meadow species were present. Sowing led to tall, dense vegetation, mainly dominated by the sown species. Ruderal and annual species had decreased 3 yr after restoration, but target species were still poorly represented. Species richness was significantly lower in the sown site than in the semi-natural target meadows and the vegetation had a different composition. Analysis of the soil seed bank of the restored meadow showed that only a few meadow species were present and that it was dominated by a few ruderal species. Three years after sowing, the vegetation of our experimental site is moving slowly towards the target communities but impoverished seed sources seem to limit the success of this restoration operation and will lead to under-saturated communities.

Authors’ abstract: Vascular plants were recorded in a long-term (28-year) experiment on semi-natural grassland vegetation comparing six treatments: continued grazing, mowing every year, mowing every third year, annual spring burning, removal of woody plants, and untreated control. The treatments had created very different vegetation types: the annually mown and grazed plots had the highest species number while the untreated plots had the lowest. The species’ ordination scores correlated with Ellenberg indicator values for nutrient status and light: species indicating poor nutrient conditions were mainly in grazed and mown plots, and shade-tolerant species were mainly in untreated and grazed plots. The original aim of this experiment was to evaluate alternative ways of maintaining semi-natural grassland vegetation, but there were no satisfactory long-term alternatives to annual mowing or grazing. An ordination contrasted annual mowing and grazing, ranking species from those associated with mowed plots (e.g. Leucanthemum vulgare, Luzula pilosa, Campanula persicifolia, Ajuga pyramidalis) to those associated with grazed plots (e.g. Ranunculus spp., Geum spp., Vicia sepium).

Other Published Sources

This comprehensive reference has excellent identification keys and detailed technical descriptions of vegetative and sexual morphology. This flora is the taxonomic authority for the invasive species fact sheets (unless otherwise indicated). Douglas et al. describe the habitat of Leucanthemum vulgare Lam., as mesic to dry roadsides, pastures and waste places in the lowland, steppe and montane zones; common throughout BC south of 56° north. Introduced from Eurasia.

Abstract: If given the opportunity, this plant can become noxious and is capable of taking over pasture. *Chrysanthemum leucanthemum* has potential to invade and modify existing communities. Little information has been published on mechanical, cultural, or biological control of this species. One important consideration is that seeds remain viable in soil for at least 2-3 years. An option for small scale control is to dig out the plant before the heads are produced, being sure to get the underground parts. Herbicides active on ox-eye daisy are 2,4-D, Banvel (dicamba), Tordon (picloram), Arsenal (imazapyr), and Oust (sulfometuron methyl). These herbicides are not, however, specific to ox-eye daisy, which is moderately resistant to MCPA, 2,4-D, and dicamba.

This book includes a descriptive paragraph and photos. No information on control measures.

Abstract not available.

Unpublished Sources and Websites

Baskauf, S. J. 2004. *Leucanthemum vulgare*. Bioimages, Department of Biological Sciences, Vanderbilt University, Nashville, TN.
Excellent photos for identification of leaves, seed head, stem and plant.

California Invasive Plant Council. No date. *Leucanthemum vulgare*. Berkeley, CA.
A fairly comprehensive overview of *Leucanthemum vulgare* including identification, habitat, vectors of spread, impacts and management techniques.

Center for Invasive Plant Management. 2004. Problem Weeds in the West. Bozeman, MT.
This website provides information on prevention and management of many invasive plants.
For *Leucanthemum vulgare*, a list of key links is provided.

Very basic information on *Leucanthemum vulgare*, and crosslinks to related references from around the world.

This document discusses the noxious weed problem in Washington, Montana, Oregon, Idaho and Wyoming, including numerous problem species, giving distribution information and management and control suggestions. For *Leucanthemum vulgare*, the paper outlines susceptibility to invasion (e.g. of riparian areas, true grassland types, Mountain Shrub, and Sepen). The paper reports that *L. vulgare* "typically responds negatively to excessive livestock grazing pressure. Horses, cattle, sheep, and goats will consume it and cattle and sheep grazing can result in reduced seed production. Its response to fire is typically neutral. The rhizomatous root system readily resprouts post-fire, and oxeye daisy exists on mesic to relatively mesic sites where fire has little deleterious effect in the subterranean environment."

This site provides information on the distribution of *Leucanthemum vulgare* in BC as well as information on identification, ecology, habitat and nomenclature, with links to other relevant websites.

This fact sheet, available as a pdf or html from these websites, provides information on the identification and biology, history, US distribution and management of *Leucanthemum vulgare*.

Missoula County Weed District. No date. Integrated Weed Management for Oxeye Daisy Control. Missoula County Weed District, Missoula, MT. http://www.mslacountyweed.org/pages/IWMCHLE.html

This website briefly outlines various methods of managing *Leucanthemum vulgare*, including hand-pulling, chemical treatment, fertilization and mowing.

This website provides excellent information including an illustrated description of *Leucanthemum vulgare*, alternative nomenclature, distribution by state, the classification system for this species and the invasiveness and noxious status for each state. The site also provides links to other US websites. Photos and line drawings on this page are not copyrighted, and may be used by acknowledging the author.

NatureServe is assessing all of the estimated 3500 non-native plant species that have escaped from cultivation in the US using a new methodology called "Invasive Species Assessment Protocol." This system, developed by NatureServe, the Nature Conservancy and the National Park Service, creates a prioritized list of non-native plants and their impact on biodiversity. The site also includes citations and references used in assessing the species. According to this matrix (January 10, 2005), *Leucanthemum vulgare* has a national impact rank of medium/low.

This website provides a distribution map for *Leucanthemum vulgare* in Canada and the US and provides information on the species' status (exotic). This species is found throughout the continent.

Noxious and Nuisance Plant Information System. No date. *Leucanthemum vulgare* Lam. (Oxeye Daisy) Mechanical Control Information. US Army Corps of Engineers, Vicksburg, MS.
Detailed information on mechanical control, including hand removal and hand-pulling, which includes description, operational considerations, timing and expected results. The second link outlines herbicides used to control *Leucanthemum vulgare*.

Plants for a Future Database. No date. *Leucanthemum vulgare*. Plants for a Future, Chapel Hill, NC.
http://www.ibiblio.org/pfaf/cgi-bin/arr_html?Leucanthemum+vulgare
This database provides information on physical characteristics, habitats and locations, edible and medicinal uses, cultivation and propagation. There are also links to numerous other sites.

http://www.coopext.colostate.edu/TRA/Weeds/weedmgmt.html
This website outlines the management of several species, and provides a calendar of flowering, seed set and germination for each weed. According to this information, *Leucanthemum vulgare* should be treated at early flowering (late May or early June in Colorado).

http://www.nwcb.wa.gov/weed_info/Written_findings/Leucanthemum_vulgare.html
A well-referenced overview of *Leucanthemum vulgare*, including description, economic importance, geographic distribution, habitat, growth and development, reproduction and response to treatment.
General summaries of basic information, or fact sheets:

- http://www.agf.gov.bc.ca/cropprot/weedguid/oxeyed.htm
- http://www.tcweed.org/oxeye.htm
- http://ohioline.osu.edu/b666/b666_4.html
- http://www.co.stevens.wa.us/weedboard/other%20weeds/o_daisy.htm
- http://www.coopext.colostate.edu/gilpin/oxeyedaisy.shtml
- http://www.co.stevens.wa.us/weedboard/msdoc_weed/ox.doc
- http://www.co.whatcom.wa.us/publicworks/pdf/weeds/oxeye_daisy2.pdf
- http://www.weeds.org.au/cgi-bin/weedident.cgi?tpl=plant.tpl&state=&s=0&ibra=all&card=H50

Personal Communications

Banman notes that oxeye daisy is widespread on southern Vancouver Island. He has seen it dominating fields, and particularly infesting disturbed sites such as roadsides, ditches and logging roads. He has seen this species commonly in the Garry oak preserves in BC, particularly at Cowichan, Sominos and Mt. Tzouhalem. He has not seen a natural site invaded by this species, however, since oxeye daisy prefers disturbed areas. Banman has tried to control this species by hand-pulling and by using a whipper-snipper. He reports that hand-pulling is reasonably effective since where you pull it, it is gone. However, this can only be done at sites where disturbing the soil is not a problem. He has used a whipper-snipper to control oxeye daisy on a road that used to be a logging road. He diligently mowed and whipper-snipped the area for two years, cutting the plants down to bare ground. He has found the plants to be tenacious. He suggests preventative measures such as limiting soil disturbance and being careful not to distribute seeds.

Beckwith has not observed oxeye daisy species in Garry oak ecosystems, but has seen it commonly in lawns and other manicured areas. It can be found along trails, especially near trailheads, and on the edges between residential zones and natural areas.

Betts has observed oxeye daisy on Vancouver Island, particularly in dry sites. It is mostly in agricultural situations where good practices have not been followed and it does extremely well in poorly managed “waste” areas. He notes that it is very difficult to control.

Boyer notes that in the prairie and oak habitats that she has been restoring, oxeye daisy is present but not dominant. If the desire is to selectively remove invasive species from a prairie remnant and oxeye daisy is one of the problem species, she has found that the most effective herbicide for composites and legumes is one containing clopyralid (e.g. Confront). The best time to spot-spray this chemical is in the rosette stage. The effects can be seen in only a day so plants that were missed can be easily spotted. A chemical dye can also be added to the herbicide to ensure all plants are sprayed. However, clopyralid has a long life in the soil so it should be very carefully spot-sprayed. Spot-spraying is preferable to broadcast-spraying, which requires that native composites or legumes not be reintroduced until after one to two years, when the chemical degrades. She and others in the restoration community feel the largest threats to native species persistence on Garry oak prairies are perennial pasture grasses such as tall oatgrass, tall fescue, bentgrass and velvet grass. However, in some sites, invasive forbs such as oxeye daisy can also have a devastating impact due to their highly competitive nature and lack of natural predators.

Ceska has observed oxeye daisy on the margin of Garry oak ecosystems, since it requires open soil and more moisture. He has seen this species in the zone of contact of Garry oak and Douglas-fir, but not in Garry oak ecosystems per se.

Costanzo has observed oxeye daisy in disturbed areas and old fields and pastures. This species, in conjunction with non-native grasses, can dominate sites that were once used for agricultural purposes. Costanzo suggests that the spread of this species could be reduced by preventing people from dumping compost and garden waste in Garry oak meadows.

Cranston, Roy. 2005. *Personal communication*. Professional Agrologist (retired), Tsawwassen, BC. April 8, 2005

While working for the Ministry of Agriculture, Food and Fisheries, Cranston did trials on oxeye daisy with herbicide, fertilizers and combinations of the two. He identified an association of oxeye daisy with soils low in sulphur. In trials, Cranston fertilized areas that were solid with oxeye daisy using ammonium sulphate fertilizer, and found it to substantially reduce populations.

Delvin has observed oxeye daisy growing extensively throughout Olympia, Washington, especially in disturbed sites, but he considers it to be a low priority species. He has found that oxeye daisy is not as competitive as other non-native species, although it can form dense, monoculture patches that prevent recruitment of native species to those sites. Oxeye daisy does not tolerate fire particularly well. Delvin has noticed a strong correlation between oxeye daisy and Scotch broom that he attributes to nitrogen enrichment and soil disturbance. Delvin has observed that a shift toward more nitrogen-rich soils favours oxeye daisy and other non-native species, and he is aware of research on the addition of carbon or sugar to
soil to tie up nitrogen and switch soil back to its native profile. Delvin notes that oxeye daisy
is a nectar source that butterflies utilize.

Ennis, Tim. 2005. *Personal communication.* Director of Land Stewardship for BC Region, The
Nature Conservancy of Canada, Victoria, BC. March 1, 2005.

Ennis is familiar with oxeye daisy in the Garry oak ecosystems at Cowichan Garry Oak
Preserve in the Maple Bay area and Somenos. He has observed that in oak sites it is
restricted to roadside and trail habitats, although he has seen a couple of oxeye daisy plants
growing in more “wild” situations. Ennis has noticed that oxeye daisy can become a
dominant element of the ecosystem in terms of percent foliar cover in places like Corvallis.
The Nature Conservancy has been actively managing oxeye daisy for a couple of years in
these sites. He has tried mowing using a whipper-snipper, but the plants seem to come back.
He has also tried using selective flaming on other species and suggests that it might work for
oxeye daisy, although he hasn’t tried it. Hand-pulling in the wet season is another method
that he recommends. Ennis has tried “Waipuna” on oxeye daisy, which is a hot water
treatment (steam) combined with an organic coconut foam for insulating the plants. He has
found it effective, but notes that the machine is restricted to 150 m of hose. Ennis suggests
that access management is an important element in managing oxeye daisy.

Fairbarns, Matt. 2005. *Personal communication.* Plant Ecologist, Aruncus Consulting, Victoria,

Fairbarns has observed oxeye daisy typically occurring on sub-hygric to mesic soils with
moderate to high nutrient levels. This species is not shade tolerant, and prefers soil
disturbance. Most sites in which he has observed oxeye daisy have been tilled, plowed or
disturbed in one way or another. He has noticed this species growing in a phalanx growth
style—a wave growing across the vegetation. It will outcompete most plants that grow in its
immediate vicinity but since it is rare in undisturbed sites, this invasiveness is probably not
an issue in Garry oak ecosystems. As with all invasive species, Fairbarns suggests
minimizing soil disturbance.

Gayton, Don. 2005. *Personal communication.* Ecosystems Management Specialist, FORREX,
Nelson, BC. March 1, 2005.

In the interior of BC, Gayton notes that classic oxeye daisy habitat is pasture that has been
cut out of a forest, as well as roadsides and landings. It is a very invasive species.

Hebda, Richard. 2005. *Personal communication.* Curator of Botany and Earth History, Royal BC
Museum, Victoria, BC. March 16, 2005.

Hebda has seen oxeye daisy primarily in pastures and roadsides, and does not usually
encounter it in Garry oak ecosystems. This species became well established years ago, and
he speculates that it has already reached the maximum extent of its impact. In pastures and
on roadsides it can be quite dense and abundant, but it does not invade really dry sites.

One potential control method that he suggests is leaf mulching (using oak leaves). By
placing the leaves over oxeye daisy plants, it may hinder the growth of this invasive species
while permitting native species to establish (although this method would not be appropriate
for rocky outcrops). Annual short mowing of this species reduces it in pasture areas,
especially if mowing is carried out during flowering. As with other weed species, Hebda
cautions against disturbing the soil, which provides a new seed bed for invasive species.

Lomer has observed oxeye daisy in Garry oak meadows, but doesn't think it is a Garry oak meadow problem. He has seen it more frequently in pastures.

Polster has observed oxeye daisy throughout southern BC. He has not seen this species in Garry oak ecosystems, but in coastal bluff ecosystems, which are related. It can form dense stands and moves into areas that are disturbed and lacking species. Oxeye daisy has not been considered a problem in Garry oak ecosystems.

Ralph has observed oxeye daisy throughout BC. He notes that it is fairly aggressive in pasture areas as well as fringe areas of forest canopy. When he was involved in soil sampling for orange hawkweed where oxeye daisy was also found, results indicated that these species prefer soils low in sulphur. Fertilization with nitrogen and sulphur helps reduce oxeye daisy and Ralph has seen good results with that fertilizer mix. In wild situations oxeye daisy is difficult to control with herbicides because it is often found in fringe conifer and deciduous forests. The herbicide 2,4-D can be used to suppress it, and the ester type is more effective than an amine. Since oxeye daisy reproduces by both seeds and stolons, care should be taken not to discard pulled plants on moist soil or they may root on the surface. As with all invasive species, maintaining natural ecosystems helps resist invasion.

Roemer has not observed oxeye daisy directly in Garry oak communities but in ecosystems that are nearby. As a European species it needs some moisture in summer. He has seen this species grow on highway embankments, roadsides and fields but not in classical Garry oak communities. He has seen oxeye daisy on grassy bluffs near the periphery of the Garry oak distribution, but not in dry communities, and he predicts that the plant would not survive in a very dry environment.

Turner notes that the leaves of oxeye daisy are edible and delicious in salads.